OVERHILLS STREAM AND WETLAND RESTORATION

MONITORING REPORT (YEAR 1 OF 5)

Harnett County, North Carolina NCEEP Project Number 199

Prepared for: North Carolina Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

Status of Plan: Final Submission Date: March 2008 Monitoring Firm:

Stantec Consulting Services Inc 801 Jones Franklin Road, Suite 300 Raleigh, NC 27606

EXECUTIVE SUMMARY

Project Background

The North Carolina Ecosystems Enhancement Program (EEP) restored 4,482 linear feet of Jumping Run Creek and 70 acres of adjacent riverine wetlands located on the Fort Bragg Overhills tract, north of Spring Lake, in Harnett County, North Carolina. Construction of the project began on July 12, 2004 and the restoration was completed on May 30, 2006. The following report provides the monitoring information for year one (1) of the stream and wetland restoration project. The project consists of a portion of Jumping Run Creek and the adjacent riverine wetland. The site is located on the Fort Bragg Military Reservation in Harnett County, North Carolina and can be accessed from Nursery Road between NC 87 and Overhills Road. Project goals and objectives for the Overhills stream restoration project included restoration of stream dimension, pattern, and profile; restoration of riverine wetland hydrology and vegetation; improvement of water quality; and protection of future water quality. Jumping Run Creek had been significantly altered from its natural path prior to the restoration efforts. The channel was relocated from its natural path to the far edge of its floodplain. The purpose of this type of relocation was typically to improve drainage of the surrounding area and create a large field for agricultural purposes. The adjacent riverine wetlands were also significantly altered due to the stream relocation. In addition a ditch that was created on the eastern edge of the property. Undeveloped forested land is located to the east and west of the project site. An agriculture field is located to the north and Nursery Road serves as the southern boundary. The Jumping Run Creek watershed is comprised of a mixture of undeveloped forested land, wetlands, suburban residential areas, commercial areas, and a large golf course community. The watershed has a drainage area of 15.9 square miles. The topography of the watershed is typical sandhills type topography which is rolling in nature.

Vegetation Assessment

The Carolina Vegetation Survey (CVS) methodology was utilized to sample vegetation in October of 2007. Ten 100m² plots have been established throughout the project. In each plot, two plot corners have been permanently located with conduit or rebar. As per the mitigation plan, the vegetative success criteria are based on the US Army Corps of Engineers Stream Mitigation Guidelines (USACE, 2003). The final vegetative success criteria will be the survival of 260 5-year old planted trees per acre at the end of the year 5 monitoring period. An interim measure of vegetation planting success will be the survival of at least 320 3-year old planted trees per acre at the end of year 3 of the monitoring period. Six of the plots have over 320 stems per acre while four of the plots have less than 320 stems per acre. In addition to the four failing vegetation plot sites, several vegetation problem areas (VPA) exist on site. In VPA 1 and 2, standing water had been present for a substantial length of time, causing the majority of the planted vegetation to die. VPA 3 is overrun with invasive species, primarily *Lespedeza. Lespedeza* is a major problem on this project site, as it is also invading most high areas.

Stream Assessment

The region has been in an extreme drought for much of 2007. No evidence of bankfull flows were observed onsite and flows were not measured with peak stage recorders. In order to verify bankfull events, a crest gauge should be installed onsite.

A major stream problem area is located from station 33+00 to 44+00 (1100 linear feet) where the stream has experienced serious failure. At Station 33+00 a head cut has developed and produced massive erosion around the bend at this location. Downstream from this head cut, most of the in-stream structures have failed. Erosion around the structures has forced the banks to migrate in as much as seven feet, making this section of stream extremely unstable. Mid-channel bar formation is also occurring along the reach. Other major issues include the presence of a beaver dam near Station 6+30. The dam is causing a hydraulic jump, producing scour downstream. Minor erosion problem areas were found from station 0+00 to station 32+00 of the restoration reach. Erosion causes were attributed to root wad failure in some cases, and shear stress in others. The placement and/or installation of some root wads has caused scouring along with bank erosion and migration from eddies that form around and behind the root wad structures.

Given the extent of the deterioration of this 1100 linear foot portion of the restoration reach, it will not be possible to repair the stream around the failed structures, or to rebuild or replace structures without addressing the characteristics of the stream. The stream has migrated vertically and is actively migrating horizontally. There are too many failed structures, and the potential for future bank erosion and additional horizontal migration is too great for a simple repair. The stream channel in this location has eroded below a clay layer into a highly erosive sandy soil layer which will continue to create stability problems. The channel should be realigned with the appropriate pattern, dimension, and structures that will adequately transition from the higher elevation of the restoration to the receiving stream which is at a lower elevation. There is room on the right side of the existing alignment to be able to develop a new pattern that will provide the correct channel dimensions, grade control structures, and step pools needed to dissipate energy though this section of the reach. This action will stop the head cut from continuing upstream causing further damage to the restored channel. The majority of the materials needed for construction could be salvaged from the impaired reach.

Wetland Assessment

Fifteen groundwater monitoring wells are currently active on the project site. Nine of the wells met the criteria of wetland attainment during the growing season of 2007, but six did not. Well JR-5 had a maximum of 24 consecutive days (10%) where the ground was saturated within 12 inches of the surface. Wells JR-10 and JR-11 had a maximum of 7 days (3%), JR-12 a maximum of 6 (3%), JR-13 21 days (9%), and JR-14 a maximum of 12 days (5%). No conclusions regarding the success or failure of wetland areas in the project area can be made at this time due to a short period of reference well data. A reference well was installed in early October, 2007, for a reference well record of just over a month at the time of this report. Given that precipitation was below the 30% percentile for the area during most of the growing season, the failure of some gauges to indicate hydrologic success is not cause for significant concern.

Table of Contents

Executive S	Summary	i
1.0 Pro	ject Background	1
1.1	Project objectives	
1.1	Project structure	
1.3	Location and Setting	
1.4	Project History and Background	
1.5	Monitoring Plan View	
	ject Condition and Monitoring Results	
2.1	Vegetation Assessment	
2.1.1	Vegetation Problem Areas	
2.1.1	Vegetation Problem Area Plan View	
2.2	Stream Assessment	
2.2.1	Hydrology	
2.2.2	Bank Stability	
2.2.3	Stream Problem Areas	
2.2.4	Stream Problem Area Plan View	
2.2.5	Stability Assessment	
2.2.6	Quantitative Measures Summary	
2.3	Stream wetland Assessment	
2.3.1	Wetland Criteria Attainment	
2.3.2	Problem Areas Plan View	
	erences	
		20

Appendix A. Vegetation Raw Data Appendix B. Geomorphologic Raw Data

Appendix C. Wetland Data

Appendix D. Integrated Problem Area Plan Views

The project consists of a portion of Jumping Run Creek and the adjacent riverine wetland. The site is located on the Fort Bragg Military Reservation in Harnett County, North Carolina.

1.1 PROJECT OBJECTIVES

Project goals and objectives for the Overhills stream and wetland restoration project included:

- restore stream dimension, pattern and profile
- restore riverine wetland hydrology and vegetation
- improve water quality
- protect future water quality

1.2 PROJECT STRUCTURE

The project consists of a portion of Jumping Run Creek and the adjacent riverine wetland. The site is located on the Fort Bragg Military Reservation in Harnett County, North Carolina.

Jumping Run Creek has been significantly altered from its natural path prior to the restoration efforts. The channel was relocated from its natural path to the far edge of its floodplain. The purpose of this type of relocation was typically to improve drainage of the surrounding area and create a large field for agricultural purposes. The existing channel was dug approximately 5-8 feet deep and about 15 feet wide at the stream bed to 20+ feet wide at the top of bank. The stream classification system for the existing reach of this project was a G4/G5c. The adjacent riverine wetlands were also significantly altered due to the stream relocation as well as a ditch that was created on the eastern edge of the property.

Priority 1 stream restoration was carried out on the entire reach resulting in restored C type channel. The pattern, dimension, and profile were restored throughout the project site by relocating the entire reach of stream. Log structures and root wads were installed to provide grade control, extra bank protection, and encourage development of bedform features. In wetland restoration areas, a mixture of grading to create microtopography, channel plugs, and berms were used manipulate and enhance the hydrology of the site. Two vegetative communities or zones were planted in the project area. One was the bottomland hardwood forest planted through the riverine wetland and the second was the stream corridor.

Exhibit Table I. Project Restoration Components Overhills/Jumping Run Creek Restoration Project - EEP Project No. 199								
Existing Existing Feet/Acres Mitigation Mitigation Coument Comment						Comment		
Stream	3064	R	P1	4482	1.0	4482	10+00.0 to 55+00.0	includes log structures and root wads
Riparian WetlandsNAR-70.01.070.0floodplain of restream						floodplain of restored stream		

R = Restoration

P1 = Priority 1

P = Preservation

1.3 LOCATION AND SETTING

The restoration site is located on the Fort Bragg Military Reservation in Harnett County, North Carolina can be accessed from Nursery Road between NC 87 and Overhills Road (Figure 1).

Undeveloped forested land is located to the east and west of the project site. An agriculture field is located to the north and Nursery Road serves as the southern boundary. The Jumping Run Creek watershed is comprised of a mixture of undeveloped forested land, wetlands, suburban residential areas, commercial areas, and a large golf course community. The watershed has a drainage area of 15.9 square miles. The topography of the watershed is typical sandhills type topography which is rolling in nature.

Directions to Overhills/Jumping Run Creek Restoration Site: From Raleigh, take US401 South following signs through Fuquay-Varina and into downtown Lillington. Turn right onto NC 27 and follow for about 9 miles, then turn left onto Nursery Rd. After 6.5 miles, Nursery Rd will come to a T, turn right to stay on Nursery Rd. The restoration site is half a mile from the T on the right hand side. To get to the reference site from the restoration site: Continue travelling east on Nursery Rd for 2 miles, then turn left onto NC24/NC87 for 3 miles. Turn right onto Vass Rd/NC 690. Continue for 3.5 miles, then turn right at sign that states "NO POVs" (this is part of Fort Bragg, need permission to enter). Follow the dirt road straight, at least 1.7 miles (do not turn or veer). The reference well is in the woods, about 100 feet from the end of the road.

Stantec

Overhills/Jumping Run Creek Restoration Project – EEP No. 199 Stantec – Monitoring Year 1 of 5 – Final

Exhibit Table II. Project Activity and Reporting History Overhills/Jumping Run Creek Restoration Project - EEP Project No. 199						
Activity or Report Complete Del						
Restoration Plan	NA	March 2003				
Final Design - 90%	NA	Dec 2003				
Construction (2004-2006)	NA	June 2006				
Temporary S&E mix applied to entire project area	NA	2004				
Permanent seed mix applied to entire project area	NA	Nov 2004				
Bare root, containers, and live stakes for majority of site	NA	Dec 2004				
Water released into new channel	NA	Oct 2005				
Permanent seed mix applied to entire project area	NA	Nov 2005				
Bare root, containers, and live stakes for remainder of site	NA	Dec 2005				
Mitigation Plan (Year 0 Monitoring - baseline)	July 2007	Nov 2007				
Year 1 Monitoring	Nov 2007	Nov 2007				
Year 2 Monitoring	NA	NA				
Year 3 Monitoring	NA	NA				
Year 4 Monitoring	NA	NA				
Year 5 Monitoring	NA	NA				

1.4 PROJECT HISTORY AND BACKGROUND

NA = Not Applicable

Exhibit Table III. Proj	ect Component Table
Overhills/Jumping Run Creek Restor	
Designer	BLUE: Land Water Infrastructure 1271 Old US Highway #1 South Southern Pines, NC 28387 Phone: 910-692-6461
Construction Contractor	Vaughn Contracting, Inc P.O. Box 796 Wadesboro, NC 28170 Phone: 704-694-6450
Surveying Subcontractor	Barbara H. Mulkey Engineers, Inc 7516 E. Independence Blvd, Suite 100 Charlotte, NC 28227 Phone: 704-537-7300
Site Preparation Subcontractor	Herndon, Inc P.O. Box 36 Lugoff, SC 29078 Phone: 803-513-8002
Erosion Control Subcontractor	Carolina Environmental Contractors, Inc P.O. Box 1905 Monut Airy, NC 27030 Phone: 336-320-3849
Vegetation Planting Contractor & Nursery Stock Supplier for livestakes and potted plants	North State Environmental, Inc 2889 Lowery Street Winston-Salem, NC 27101 Phone: 339-725-2010
Nursery Stock Supplier for bare roots	International Paper
Seed Mix Sources	NA
Monitoring Performers	Stantec Consulting Services, Inc 801 Jones Franklin Rd, Ste 300 Raleigh, NC 27606
Stream Monitoring POC Vegetation Monitoring POC Wetland Monitoring POC	David Bidelspach 919-851-6866 Amber Coleman 919-851-6866 Amber Coleman 919-851-6866

Exhibit Table IV. Project Background Table Overhills/Jumping Run Creek Restoration Project - EEP Project No. 199				
Project County	Harnett County			
Drainage Area	15.9 square miles			
Drainage impervious cover estimate (%)	5%			
Stream Order	3rd			
Physiographic Region	Sandhills			
Ecoregion	Sandhills			
Rosgen Classification of As-built	C5			
Cowardin Classification	Palustrine			
Dominant soil types	Roanoke			
	Bibb			
	Wehadkee			
	Augusta			
Reference site ID	Gum Swamp			
USGS HUC for Project	03030004			
USGS HUC for Reference	03030004			
NCDWQ Subbasin for Project	03-16-14			
NCDWQ Subbasin for Reference	03-16-13			
NCDWQ Classification for Project	С			
NCDWQ Classification for Reference	С			
Any portion of any project segment 303d listed?	No			
Any portion of any project segment upstream of a 303d listed				
segment?	No			
Reasons for 303d listing or stressor				
Percent of project easement fenced	0%			

1.5 MONITORING PLAN VIEW

See Monitoring Plan View Sheets on the following pages.

This page intentionally blank

VERHILLS

(Nursery Road) Jumping Kun Creek / McLeod's Creek Stream and Wetland Restoration Project Harnett County, North Carolina

Prepared For: The NC Ecosystem Enhancement Program (NCEEP)

LEGEND							
\sim	DESIGN THALWEG TO DESIGN LOG CROSS VANE						
$\langle \rangle$		BANKFULL	9 -	DESIGN ROO	T WAD		
DESIGN BANKFULL • VEG PLOT PINS							
MONITORING LONGITUDINAL PROFILE							
	DESIGN GRAD	DE	+	-+ CROSS-SEC	TIONS		
			0	≯ рното роім	ITS		
CROSS	SECTION PIN	LOCATIONS	VEG	PLOT PIN CC	ORDINATES		
PIN	LAT	LONG	PIN	LAT	LONG		
XS1PL	35.26109096	-79.00252352	VP1	35.26080136	-79.00066535		
XS1PR	35.26124247	-79.00249424	VP1	35.26092137	-79.00083395		
XS2PL	35.26081361	-79.00061178	VP7	35.26053462	-79.00144889		
XS2PR	35.26072332	-79.00069698	VP7	35.26064411	-79.00136751		

Stantec Consulting Services Inc. Suite 300, 801 Jones Franklin Rd Raleigh, NC 27606 Tel. 919.851.6866 Fax. 919.851.7024 www.stantec.com

		1	
	PROJECT NO.	SHEET	NO.
	SCO#070695701	01	
	AS-BUILT PROJECT	ENGINE	ER
D		to	
ہر 1		XS#2	
Ŋ	1	T	
		2	
	8		

Stantec Consulting Services Inc. Suite 300, 801 Jones Franklin Rd Raleigh, NC 27606 Tel. 919.851.6866 Fax. 919.851.7024 www.stantec.com

PROJECT NO.	SHEET NO.
SCO#070695701	03
AS-BUILT PROJECT	ENGINEER

LEGEND								
DESIGN THALWEG TO DESIGN LOG CROSS VANE								
		BANKFULL	9	DESIGN ROOT	WAD			
DESIGN BANKFULL • VEG PLOT PINS								
MONITORING LONGTUDINAL PROFILE								
DESIGN GRADE + CROSS-SECTIONS								
	SECTION PIN			PLOT PIN CO				
PIN		LOCATIONS	PIN		LONG			
XS5PL	35.25857955	-78.99914964	VP8	35.25882237				
XS5PR	35.25849085		VP8	35.25870055				
XS6PL	35.25763716		VP9	35.25930164	-78.99884514			
XS6PR	35.25764396	-78.99883106	VP9	35.25942907	-78.99884242			
			VP10	35.25851643	-78.99760386			
			VP10	35.25858954	-78.99773114			

	PROJECT NO. SHEET NO.
	SCO#070695701 05
	AS-BUILT PROJECT ENGINEER
Stantec Consulting Services Inc. Suite 300, 801 Jones Franklin Rd Raleigh, NC 27606 Tel. 919.851.6866 Fax.919.851.7024 www.stantec.com	
L	EGEND
DESIGN THALWEG	DESIGN LOG CROSS VANE
AS-BUILT BANKFULI	
DESIGN BANKFULL	VEG PLOT PINS
MONITORING LONGITUDINAL PROF	TILE VEG PLOTS
DESIGN GRADE	++ CROSS-SECTIONS
	PHOTO POINTS
CROSS SECTION PIN LOCATIO PIN LAT LON XS7PL 35.25664804 -78.9982 XS7PR 35.25658024 -78.9983 XS8PL 35.25554027 -78.9973 XS8PR 35.2554811 -78.9973	G PIN LAT LONG 20991 VP6 35.25624213 -78.99811395 35587 VP6 35.25642411 -78.99816074 17099

2.1 VEGETATION ASSESSMENT

The Carolina Vegetation Survey (CVS) methodology was utilized to sample vegetation in October of 2007. Ten $100m^2$ plots have been established throughout the project. In each plot, two plot corners have been permanently located with conduit or rebar.

As per the mitigation plan, the vegetative success criteria are based on the US Army Corps of Engineers Stream Mitigation Guidelines (USACE, 2003). The final vegetative success criteria will be the survival of 260 5-year old planted trees per acre at the end of the year 5 monitoring period. An interim measure of vegetation planting success will be the survival of at least 320 3-year old planted trees per acre at the end of year 3 of the monitoring period.

The Year 1 stem counts within each of the vegetative monitoring plots are included in Exhibit Tables A1 through A5 in Appendix A. Six of the plots have over 320 stems per acre while four of the plots have less than 320 stems per acre.

2.1.1 Vegetation Problem Areas

In addition to the four failing vegetation plot sites, several vegetation problem areas exist on site. These sites are referred to as VPA 1, 2, & 3 on the Integrated Problem Area Plan View located in Appendix D. In VPA 1 and 2, standing water had been present for a substantial length of time, causing the majority of the planted vegetation to die (Photos 1 & 2 in Appendix A2). VPA 3 is currently overrun with invasive species, primarily *Lespedeza* (Photo 3). *Lespedeza* is a major problem on this project site, as it is also invading berms and most high areas (Photo 4).

2.1.2 Vegetation Problem Area Plan View

Vegetative problem areas are shown on the Current Condition Plan View in Appendix D.

2.2 STREAM ASSESSMENT

2.2.1 Hydrology

The region has been in an extreme drought for much of 2007. No evidence of bankfull flows were observed onsite and flows were not measured with peak stage recorders. In order to verify bankfull events, a crest gauge should be installed onsite.

Exhibit Table V. Verification of Bankfull Events Overhills/Jumping Run Creek Restoration Project - EEP Project No. 199							
Date of Data Collection	Date of Data Date of Method Photo						
2007	None	NA	NA				

2.2.2 Bank Stability

As directed by EEP, bank stability will not formally be measured for this project.

2.2.3 Stream Problem Areas

A major stream problem area is located from station 33+00 to 44+00 (1100 linear feet) where the stream has experienced serious failure. At Station 33+00 a head cut has developed and produced massive erosion around the bend at this location (see SPA Photos 1 & 2 in Appendix B3 and Appendix D Integrated Problem Areas Plan View). Downstream from this head cut, most of the in-stream structures have failed (SPA Photos 3 & 4). Erosion around the structures has forced the banks to migrate as much as seven feet, making this section of stream extremely unstable. Mid-channel bar formation is also occurring along the reach (SPA Photo 5). The headcut and downstream problems are apparent in the longitudinal profile of the channel. The survey data suggest that this section of the stream may not have been transitioned to the existing stream properly. The designed pattern and structures were not appropriate for a channel with this gradient. The log cross-vane structures on this reach do not match the goals of the design. Instead of notching the log arms that connect to the vane, the log arms were simply "butted" up against one another (SPA Photo 3). There was also a lack of geotextile fabric in the installation and the angle of the structure was not optimal to reduce near bank sheer stress and bank scour. Other major issues include the presence of a beaver dam near Station 6+30 (Photo 6). The dam is causing a hydraulic jump, producing scour downstream.

With the extent of the existing deterioration of this 1100 linear foot portion of the restoration reach, it will not be possible to repair the stream around the failed structures, or to rebuild or replace structures without addressing the characteristics of the stream. The stream has migrated vertically and is actively migrating horizontally. There are too many failed structures and the potential for future bank erosion and additional horizontal migration is too great for a simple repair. The stream channel in this location has eroded below a clay layer into a highly erosive sandy soil layer which will continue to create stability problems. The channel should be realigned with the appropriate pattern, dimension, and structures that will adequately transition from the higher elevation of the restoration to the receiving stream which is at a lower elevation. There is room on the right side of the existing alignment to be able to develop a new pattern that will provide the correct channel dimensions, grade control structures, and step pools needed to dissipate energy though this section of the reach. This action will stop the head cut from continuing upstream causing further damage to the restored channel. The majority of the materials needed for construction could be salvaged from the impaired reach.

Minor erosion problem areas were found from station 0+00 to station 32+00 of the restoration reach (Photo 7). Erosion causes were attributed to failure at the root wad in some cases and shear stress in others. Shear stress is caused by high velocity flows towards the outside of the meander. The placement and/or installation of some root wads has caused scouring, along with bank erosion and migration from

eddies that form around and behind the root wad structures (SPA Photo 8). The problem areas here can be fixed with simple hand grading of the banks and live stake planting around the toe of the structures. This will help stabilize the banks and limit the amount of erosion and degradation currently occurring. The hand grading should bring the banks back to a reasonable slope to the top of the banks or the berms on either side. These areas should be addressed to prevent additional erosion and migration from occurring. See Exhibit Table B1 and representative photos in Appendix B as well as the map in Appendix D for more information.

2.2.4 Stream Problem Area Plan View

Stream problem areas are shown on the Current Condition Plan View in Appendix D.

Exhibit Table VI. Categorical Stream Feature Visual Stability Assessment								
Overhills/Jumping Run Creek - EEP Project No. 199								
Feature Initial MY-01 MY-02 MY-03 MY-04 MY-05								
A. Riffles	76%	76%						
B. Pools	70%	70%						
C. Thalweg	77%	77%						
D. Meanders	91%	91%						
E. Bed General	75%	75%						
F. Bank Condition	74%	73%						
G. Vanes / J Hooks, etc.	36%	34%						
H. Wads and Boulders	65%	63%						

2.2.5 Stability Assessment

2.2.6 Quantitative Measures Summary

						le VII. B												
						oing Run			0		0					-		
Parameter	USC	GS Gage	Data	Regiona	ıl Curve	Interval	Pre-Ex	xisting Co	ondition	Project	Stream F	Reference		Design			Baseline	
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)							11.7	15.9	14.5	10.8	20.4	14.4	21.0	25.0	22.5	18.5	23.2	20.1
Flood Prone Width (ft)							-	-	16.5	-	-	200.0	-	-	200	-	-	-
BF Cross Sectional Area (SF)							54.6	77.5	56.7	13.5	22.1	21.0	35.0	46	41	23.0	49.0	36.0
BF Mean Depth (ft)							2.4	2.5	2.50	1.0	2.7	2.7	2.5	2.5	2.5	1.2	2.7	1.7
BF Max Depth (ft)							2.4	2.5	2.5	1.8	4.2	3.2	2.5	2.5	2.5	2.4	4.8	2.9
Width/Depth Ratio							4.9	6.4	5.8	4.1	8	5.4	8.4	10	9	7.8	15.5	11.7
Entrenchment Ratio							-	-	1.2	-	-	13.9	-	-	8.9	-	-	-
Bank Height Ratio							2.5	0.8	2.4	0.6	1.5	1.2	1.0	2.4	1.2	-	-	-
Wetted Perimeter (ft)							-	-	-	-	-	-	-	-	-	-	-	-
Hydraulic Radius (ft)							-	-	-	-	-	-	-	-	-	-	-	-
Pattern																		
Channel Beltwidth (ft)							-	-	600	45	110	77	80	200	110	48	149	100
Radius of Curvature (ft)							-	235	235	12	30	23.4	30	175	80	30	167	68.0
Meander Wavelength (ft)							315	660	500	125	175	150	125	250	200	10	276	220
Meander Width ratio							21.8	45.6	3.5	8.7	12.2	10.4	5.6	11.1	8.9	6.40	13.00	10.10
Profile																		
Riffle Length							-	-	-	-	-	-	-	-	-	12	183	72
Riffle Slope							-	-	-	-	-	-	-	-	-	0.0500	0.1100	0.0810
Pool Length							-	-	-	-	-	-	-	-	-	8	116	151
Pool Spacing							-	-	-	-	-	-	-	-	-	39	231.00	121
Substrate																		
d50 (mm)							0.5	9	0.5	0.58	0.65	0.62	0.5	9	0.5	0.09	0.27	0.21
d84 (mm)							2.6	30	2.6	1.7	1.7	1.7	2.6	30	2.6	0.36	0.44	0.4
Additional Reach Parameters		1	1		1				1		r			1	1			
Valley Length (ft)							_		2808			230			2444			2444
Channel Length (ft)							-	-	3064	<u> </u>		330	-	-	4400		-	4400
Sinuosity							-	-	1.1	<u> </u>	2.3	1.4	-	2.1	1.6		-	1.8
Water Surface Slope		<u> </u>						-	1,1	<u> </u>	2.3	1.4	-	Z.1 -	7E-04	-	-	0.0011
BF Slope							-	-	-		-	-	-	-	/E-04			0.0011
Rosgen Classification							- G5c	- G4	- G5c	- E5	- C5	- E5	- E	- C	- E	-	-	0.0015 C5
*Habitat Index		<u> </u>					0.00	04	0.00	E3		E3	E			-	-	
		<u> </u>																
*Macrobenthos																		

*Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria

Exhibit Table VIII. Morphology and Hydraulic Monitoring Summary Overhills/Jumping Run Creek Restoration Project - EEP Project No. 199																							
									0	Overhill	S												
Parameter	Cros	ss Sectio	n 1	Cro	ss Secti	on 2	Cro	ss Secti	ion 3	Cros	ss Secti	on 4	Cros	ss Secti	on 5	Cr	oss Secti	on 6	Cro	ss Sectio	n 7	Cros	s Section 8
	Sta	1+64 Poo	ol	St	ta 8+47 Po	ool	Sta	13+12 R	iffle	Sta	20+93 Ri	ffle	Sta	1 26+86 F	ool	St	a 31+56 Ri	iffle	Sta	a 37+24 Po	ol	Sta 4	43+82 Pool
Dimension	MY0	MY1		MY0	MY1		MY0	MY1		MY0	MY1		MY0	MY1		MY0	MY1		MY0	MY1		MY0	MY1
BF Width (ft)	26.87	24.66		22.27	22.29		18.15	17.86		23.19	22.25		24.16	24.5		19.06	19.24		16.54	16.68		27.1	27.7
Floodprone Width (ft) (approx)	>100	>100		>100	>100		>100	>100		>100	>100		>100	>100		>100	>100		>100	>100		>100	>100
BF Cross Sectional Area (ft ²)	71.89	67.45		44.82	51.12		31.03	31.52		49.19	59.6		37.7	40.91		23.43	25.35		35.21	39.41		106.1	111
BF Mean Depth (ft)	2.74	2.68		2.01	2.29		1.71	1.76		2.12	2.68		1.56	1.67		1.23	1.32		2.13	2.36		3.92	4
BF Max Depth (ft)	4.5	4.66		4.8	4.90		2.6	2.6		4.3	5.9		2.4	2.6		1.9	2.2		3.5	3.7		7.4	7.1
Width/Depth Ratio	9.0	10.0		11.1	9.7		10.6	10.1		10.9	8.3		15.5	14.7		15.5	14.6		7.8	7.1		6.9	6.9
Entrenchment Ratio	>3.72	>4.1		>4.49	>4.48		>5.51	>5.6		>4.32	>4.49		>4.14	>4.08		>5.25	>5.20		>6.05	>6.0		>3.69	>3.61
Wetted Perimeter (ft)																							
Hydraulic radius (ft)																							
Substrate																							
d50 (mm)							0.27	0.10		0.093						0.27	0.15						
d84 (mm)							0.41	0.27		0.36	0.28					0.44	0.35						
Parameter	MY	-00 (200	7)	MY	Y-01 (20	01 (2007)		MY-02 (2008)		MY	-03 (20	09)	МҮ	2 -04 (2 0)10)	Μ	Y-05 (20	11)					
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med					
Channel Beltwidth (ft)	48	149	100	42	146	94																	
Radius of Curvature (ft)	30	167	68.0	35	158	74																	
Meander Wavelength (ft)	130	26	220	125	276	205																	
Meander Width Ratio	6.40	13.70	10.10	6.30	14.00	10.10																	
Profile																							
Riffle Length (ft)	20	122	72	20	100	60																	
Riffle Slope (ft)	0.0011	0.1630	0.0815	0.0016	0.1404	0.0710																	
Pool Length (ft)	8	116	51.0	14	37	84																	
Pool Spacing (ft)	39	231	121	39	319	111																	
Additional Reach Parameters																							
Valley Length (ft)		2605			2605																		
Channel Length (ft)		4400			4400																		
Sinousity		1.68			2																		
Water Surface Slope (ft/ft)		0.0016			0.0015																		
BF Slope (ft/ft)		0.0012			0.0011																		
Rosgen Classification		С			С																		
*Habitat Index																							
*Macrobenthos																							

This page intentionally left blank

Page 22 March 2008

2.3 WETLAND ASSESSMENT

2.3.1 Wetland Criteria Attainment

A site is considered to meet the requirements for wetland hydrology if the groundwater saturation is within 12 inches of the ground surface consecutively for 12.5% of the growing season. Fifteen groundwater monitoring wells are currently active on the project site. Nine of the wells met the criteria during the growing season of 2007, but six did not. The growing season in this area is from March 18th to November 8th for a total of 234 days (NRCS 2002). Well JR-5 had a maximum of 24 consecutive days (10%) where the ground was saturated within 12 inches of the surface. Wells JR-10 and JR-11 had a maximum of 7 days (3%), JR-12 a maximum of 6 (3%), JR-13 21 days (9%), and JR-14 a maximum of 12 days (5%) (Appendix C1).

No conclusions regarding the success or failure of wetland areas in the project area can be made at this time due to a short period of reference well data. A reference well was installed in the vicinity of the site on October 2, 2007, and data was collected from this date until downloading on November 9th (Figure 1). The groundwater level at this site remained below the required saturation depth of 12 inches until October 27th. However, with just over a month of data at the reference well, no comparisons between the wells in the project area and the reference well can be made. Given that precipitation was below the 30% percentile for the area during most of the growing season, the failure of some gauges to indicate hydrologic success is not cause for significant concern.

Tract	Well ID	Well Hydrology Threshold Met?	Tract Mean	Mean Plot ID (320 stems/acre)								
Site	1	Y		VP1	Y (405)							
	2	Y		VP2	N (162)							
	3	Y		VP3	N (243)	60%						
	4	Y		VP4	Y (324)							
	5	Ν		VP5	N (121)							
	6	Y		VP6	× ,							
	7	Y		VP7	Y (445)							
	8	Y	60%	VP8	Y (769)							
	9	Y		VP9	N (283)							
	10	Ν		VP10	Y (445)	(150						
	11	Ν				(453 stams/sams)						
	12	Ν				stems/acre)						
	13	Ν				1						
	14	Ν										
	15	Y				1						
ference	Ref Site 1	n/a*				1						

*Reference well was installed near the end of the growing season

2.3.2 Current Condition Plan View

The plan view for the wetland problem areas is located in the Current Condition Plan View in Appendix D.

Harrelson, C.C., C.L. Rawlins and J.P. Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. United States Department of Agriculture, Fort Collins, CO.

Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation, Version 4.0 (http://cvs.bio.unc.edu/methods.htm).

NCEEP. 2006. Content, Format and Data Requirements for EEP Monitoring Reports. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 1.2 November 16, 2006.

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.

USACE. 2003. Stream Mitigation Guidelines. United States Army Corps of Engineers, Wilmington Regulatory District; North Carolina Division of Water Quality; United Stated Environmental Protection Agency, Region IV; Natural Resources Conservation Service; and North Carolina Wildlife Resources Commission. April 2003.

Weakley, Alan S. 2007. Flora of the Carolinas, Virginia, Georgia, and surrounding areas. University of North Carolina Herbarium. Chapel Hill, NC. Working draft of January 11, 2007.

Click on the Desired Link Below

Appendix A (Veg. Data & Photos)

> Appendix B (Stream Photos)

> > Appendix C (Hydro Data)

Appendix D (Plan View) **APPENDIX A – VEGETATION RAW DATA & PHOTOS**

A.1 VEGETATION DATA TABLES

EXHIBIT TABLE A1. VEGETATION	METADATA
Report Prepared By	Amber Coleman
Date Prepared	11/25/2007 17:43
database name	Stantec-Overhills_MillBranch-2007-A-v220-yr0-yr1.mdb
database location	U:\171300168
computer name	COLEMANA
DESCRIPTION OF WORKSHEETS I	N THIS DOCUMENT
	This worksheet, which is a summary of the project and the project
Metadata	data.
	Each project is listed with its PLANTED stems, for each year. This
Proj, planted	excludes live stakes and lists stems per acre.
	Each project is listed with its TOTAL stems, for each year. This
	includes live stakes, all planted stems, and all natural/volunteer
Proj, total stems	stems. Listed in stems per acre.
Plots	List of plots surveyed.
Vigor	Frequency distribution of vigor classes.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of occurrences
Damage	and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	Count of planted living stems of each species for each plot; dead
Planted Stems by Plot and Spp	and missing stems are excluded.
PROJECT SUMMARY	
Project Code	199
project Name	Overhills Stream and Wetland Restoration
Description	Stream and Wetland Restoration
River Basin	
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	10

	Species	4	3	2	1	0	Missing
	Cephalanthus occidentalis	3	5	3			
	Cornus amomum		6	6		1	
	Cyrilla racemiflora	1					
	Fraxinus pennsylvanica	7					
	Nyssa biflora	7	16				
	Quercus nigra		1				
	Quercus phellos	4					
	Salix nigra	4	2				
	Sambucus canadensis	1	5	2		4	
	Sambucus nigra		1				
	Taxodium distichum	26	1				
	Morella cerifera	1	1				
	Magnolia grandiflora	2				1	
	Unknown	1	2				
TOT:	14	57	40	11		6	

EXHIBIT TABLE A2. VEGETATION VIGOR BY SPECIES

EXHIBIT TABLE A3. VEGETATION DAMAGE BY SPECIES

Becies	411	o (no mago	Dr. damac Cateoc	Out of the	UnionUnk	innoun Animal
Cephalanthus occidentalis	11	8	5			
Cornus amomum	13	6	3	2	2	
Cyrilla racemiflora	1	1				
Fraxinus pennsylvanica	7	7				
Magnolia grandiflora	3	2			1	
Morella cerifera	2	2				
Nyssa biflora	23	23				
Quercus nigra	1	1				
Quercus phellos	4	4				
Salix nigra	6	6				
Sambucus canadensis	12	7	5			
Sambucus nigra	1	1				
Taxodium distichum	27	27				
Unknown	3	3				
TOT: 14	114	98	11	2	3	

EXHI	EXHIBIT TABLE A4. VEGETATION DAMAGE BY PLOT													
	olor	4//2	Deme De	Dr. damar Catego	Out of the One	UniUnt	imominominominominominomino (martino)							
	Overhills-01-0001-year:1	10	9			1	ĺ							
	Overhills-01-0002-year:1	4	4				1							
	Overhills-01-0003-year:1	7	7											
	Overhills-01-0004-year:1	8	8											
	Overhills-01-0005-year:1	3	3											
	Overhills-01-0006-year:1	34	22	10	1	1								
	Overhills-01-0007-year:1	11	11											
	Overhills-01-0008-year:1	19	16	1	1	1								
	Overhills-01-0009-year:1	7	7											
	Overhills-01-0010-year:1	11	11											
TOT:	10	114	98	11	2	3								

EXHIBIT TABLE A5-A. STEM COUNT BY PLOT AND SPECIES - Year 1

	Soecies	20	* ci Plans	avos red Siens	Dir. Stems	Dici Overhim	0/0, 0/0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	DIO: 010-10-01-0000000000000000000000000000	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	DION OVERHINS OF ODOL	Dire Drenhills	Dic Overhin 0006	DIC Verhin -00	Dic Derhin 01.000 Dear:	COVERTING OF 1000 VENT
	Cephalanthus occidentalis	11	2	5.5	4					7					
	Cornus amomum	12	3	4	1					6		5			
	Cyrilla racemiflora	1	1	1	1										
	Fraxinus pennsylvanica	7	4	1.75			2	3			1		1		
	Magnolia grandiflora	2	1	2						2					
	Morella cerifera	2	2	1						1		1			
	Nyssa biflora	23	9	2.56	1		3	3	1	1	4	4	1	5	
	Quercus nigra	1	1	1								1			
	Quercus phellos	4	2	2	1					3					
	Salix nigra	6	3	2	2					2		2			
	Sambucus canadensis	8	2	4						6		2			
	Sambucus nigra	1	1	1								1			
	Taxodium distichum	27	9	3		4	2	2	2	1	4	2	4	6	
	Unknown	3	2	1.5							2		1		
TOT:	14	108	14		10	4	7	8	3	29	11	18	7	11	
	Total Planted Stems/Acre				405	162	283	324	121	1174	445	728	<mark>283</mark>	445	
EXHIBIT TABLE A5-B. STEM COUNT BY PLOT AND SPECIES - Year 0

Beccies	⁷ or	* DI Stems	aligation of the second s	Dio.	DIO.	010, 010, 00, 00, 00, 00, 00, 00, 00, 00	010, 010, 00, 00, 00, 00, 00, 00, 00, 00	DIG: 04013-07-003	Dior Overhills.07.0004	Dio. Uverhills	DIOS OVERhills	DIG: 0verhill.	010,000,000,000,000,000,000,000,000,000	1 0verhils.01.000
Cephalanthus occidentalis	11	2	5.5	4					7					
Cornus amomum	13	3	4.33	1					7		5			
Cyrilla racemiflora	1	1	1	1										
Fraxinus pennsylvanica	7	4	1.75			2	3			1		1		
Magnolia grandiflora	3	2	1.5						2		1			
Morella cerifera	2	2	1						1		1			
Nyssa biflora	21	8	2.62	1		2	3	1		4	4	1	5	
Quercus nigra	1	1	1								1			
Quercus phellos	4	2	2	1					3					
Salix nigra	7	3	2.33	2					2		3			
Sambucus canadensis	12	2	6						10		2			
Taxodium distichum	27	9	3		4	2	2	2	1	4	2	4	6	
Unknown	3	2	1.5							2		1		
TOT: 13	112	13		10	4	6	8	3	33	11	19	7	11	
Total Planted Stems/Acre				405	162	243	324	121	1335	445	769	283	445	

EXHIBIT TABLE A6. VEGETATION PROBLEM AREAS

Feature/Issue	Station # / Range	Probable Cause	Photo #
death of trees and plants	VPA1 & VPA2	previous flooding	1&2
		Invasion of	
invasive/exotic species	VPA3	Lespedeza	3 &4

*The location of vegetation problem areas is show in the integrated problem area plan view map in Appendix D

A.2 VEGETATION PROBLEM AREA PHOTOS

Photo 1. Flooding in VPA-1 facing northeast. Ponding caused vegetation failure. (6/13/07)

Photo 2. Dried pond in VPA1 facing southwest. Note absence of woody vegetation. (10/2/07)

Photo 3. Invasive species, Lespedeza, in VPA3 (8/23/07)

Photo 4. Invasive species, Lespedeza, on berms and high areas throughout the project area (10/2/07)

A.3 VEGETATION MONITORING PLOT PHOTOS

Photo Station 11. Veg Plot 1 - looking north (10/2/07)

Photo Station 12. Veg Plot 1 – looking northeast (10/2/07)

Photo Station 13. Veg Plot 2 - looking northeast (10/2/07)

Photo Station 14. Veg Plot 2 – looking north (10/2/07)

Photo Station 15. Veg Plot 3 – looking northeast (10/2/07)

Photo Station 16. Veg Plot 3 – looking north (10/2/07)

Photo Station 17. Veg Plot 4 – looking northeast (10/2/07)

Photo Station 18. Veg Plot 4 – looking east (10/2/07)

Photo Station 19. Veg Plot 5 - looking northeast (10/2/07)

Photo Station 20. Veg Plot 5 - looking east (10/2/07)

Photo Station 21. Veg Plot 6 – looking south (10/2/07)

Photo Station 22. Veg Plot 6 – looking southwest (10/2/07)

Photo Station 23. Veg Plot 7 – looking north (10/2/07)

Photo Station 24. Veg Plot 7 – looking northeast (10/2/07)

Photo Station 25. Veg Plot 8 – looking southwest (10/2/07)

Photo Station 26. Veg Plot 8 – looking west (10/2/07)

Photo Station 27. Veg Plot 9 – looking north (10/2/07)

Photo Station 28. Veg Plot 9 – looking northeast (10/2/07)

Photo Station 29. Veg Plot 10 - looking northwest (10/2/07)

Photo Station 30. Veg Plot 10 – looking west (10/2/07)

APPENDIX B – GEOMORPHOLOGIC RAW DATA

B.1 CURRENT CONDITION PLAN VIEW (STREAM)

Please see the Integrated Current Condition Plan View in Appendix D for stream problem areas.

B.2 STREAM PROBLEM AREAS TABLE

	Exhibit Table B1. Stream Problem Areas Overhills/Jumping run Creek Restoration Project - EEP No. 199												
MAJOR PROBLEM AREAS													
Feature/Issue	Stream Reach	Station # / Range	Probable Cause	ID	Photo #								
Headcut	Restored reach	33+00	In-stream structural failure	SPA 1	1 & 2								
Bank Erosion/Migration	Restored reach	33+00 to 44+00	Headcut formation, in-stream structural failure	SPA 1	3 & 4								
Mid-channel Bar Formation	Restored reach	33+00 to 44+00	In-stream structural failure	SPA 1	5								
Hydraulic Jump/Scour	Restored reach	6+30	Beaver dam	SPA 9	6								
MINOR PROBLEM AREA	AS												
Bank Erosion	Restored reach	0+00 to 32+00	Excess near bank shear stress	SPA 3 & 8	7								
Bank Erosion	Restored reach	0+00 to 32+00	Root wad failure	SPA 2 & 4-7	8								

B.3 REPRESENTATIVE STREAM PROBLEM AREAS PHOTOS

Photo 1. Looking downstream at the start of the head cut at Station 33+00 (7/4/07)

Photo 2. Looking upstream at the location of the head cut at Station 33+00 (7/4/07)

Photo 3. Failed log cross-vane structure downstream of the headcut. The logs were not notched together, allowing the arms to separate from the cross log. (7/4/07)

Photo 4. Typical example of a structure that has been washed away and resultant bank erosion (7/4/07)

Photo 5. Mid-channel bars forming in the failed restoration channel (7/4/07)

Photo 6. Beaver dam located at Station 6+30 (11/9/07)

Photo 7. Bank erosion developing around the meander bends at various locations of the project (7/4/07)

Photo 8. Example of eddies that have caused scouring and erosion around the toes and banks of the root wad structures (7/4/07)

B.4 STREAM PHOTO STATION PHOTOS

Photo Station 1. Beginning of Reach – looking upstream (7/4/07) (Note: Locations of stations are shown on the monitoring plan view)

Photo Station 2. Cross section 1 - looking downstream (11/9/07)

Photo Station 3. Cross section 2 - looking downstream (11/9/07)

Photo Station 4. Cross section 3 – looking downstream (11/9/07)

Photo Station 5. Cross section 4 - looking downstream (11/9/07)

Photo Station 6. Cross section 5 - looking downstream (7/4/07)

Photo Station 7. Cross section 6 - looking downstream (11/9/07)

Photo Station 8. Cross section 7 – looking downstream (11/9/07)

Photo Station 9. Cross section 8 - 100 king downstream (11/9/07)

Photo Station 10. End of Project – looking upstream (7/4/07)

B.5 QUALITATIVE VISUAL STABILITY ASSESSMENT

Exhibit Table B.2. Visual Morphological Stability Assessment											
	Overhills/Jumping Run Creek	x - EEP Projec	t No. 199								
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total Number per As- built	Total Number/Feet in Unstable State	% Perform in Stable Condition	Feature Perform. Mean or Total					
A. Riffles	1. Present?	14	21		67%						
	2. Armor stable (eg no displacement?)	N/A	N/A								
	3. Facet grade appears stable?	16	21		76%						
	4. Minimal evidence of embedding/fining?	N/A	N/A								
	5. Length appropiate?	18	21		86%	76%					
B. Pools	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	18	22		82%						
	2. Sufficiently deep (Max Pool D:Mean Bkf > 1.6?)	16	22		73%	1					
	3. Length appropriate?	12	22		55%	70%					
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	16	22		73%						
	2. Downstream of meander (glide/inflection) centering?	18	22		82%	77%					
D. Meanders	1. Outer bend in state of limited/controlled erosion?	24	32		75%						
	2. Of those eroding, # w/concomitant point bar formation?	3	3		100%						
	3. Apparent Rc within spec?	32	32		100%						
	4. Sufficient floodplain access and relief?	28	32		88%	91%					
E. Bed General	1. General channel bed aggradation areas (bar formation)		4400	400	91%						
	2. Channel bed degradation - areas of increasing down-cutting or head-cutting?		4400	1100	75%	75%					
F. Bank	1. Actively eroding, wasting, or slumping bank?		4400	1200	73%	73%					
G. Vanes	1. Free of back or arm scour?	16	37		43%						
	2. Height appropriate?	12	37		32%	1					
	3. Angle and geometry appear appropriate?	10	37		27%						
	4. Free of piping or other structural failures?	12	37		32%	34%					
H. Wads/Boulders	1. Free of scour?	12	19		63%						
	2. Footing stable?	N/A	N/A			63%					

B.6 CROSS SECTION PLOTS

See following page for cross section plots.

Project Name Cross Section	Overhills Cross Section	Featu 1	e Riffle		Date Crew		-7/4/2007, Year 1 - 11/09/2007 - Bidelspach, Jean, Geenen, Yea	1 - Geenen, Ball	estero											
Project Name Cross Section Year 5 - 2011 2011 Survey Station Elevation	Cross Section	1 1 Year 4 2010 Se	2010	Station	Crew Year 3 - 200 2009 Survey	AS Built 19		Y	rear 1 - 2007 2007 Survey Elevation Notic 189.93 Lc 190.1 190.47 190.73 190.34 190.63 190.45 L 188.24 187.37 186.32 185.87 186.21 186.21 186.56 187.36 187.39	es Station	1 189.86 2 190.13 5 190.45 1 190.36 2 189.62 5 187.98 2 188.45 6 187.98 2 185.91 9 186.45 1 186.47 1 186.17 1 186.17 1 186.17	ît Pin								
L								50.28 54.26 58.46 61.65	190.43 F 190.41 190.71 Rig	RBK 44.12 45.25	2 187.46 5 187.93 4 188.41 5 189.19 9 190.07 190.43 Fil 5 190.2 9 190.32 Righ 5 190.03 5 190.73 7 192.07		Area Width Mean Depth	Year 5 - 2011	Photo of d Year 4 - 2010	Cross-Section 2 - 1 Year 3 - 2009	Looking Downstre Year 2 - 2008	am @ STA 1+64 Year 1 - 2007 67.45 24.66 2.74	Baseline 71.89 26.87 2.68	Bench

Project Name Overhil Cross Section Cross S			-7/4/2007, Year 1 - 11/09/2007 - Bidelspach, Jean, Geenen, Year 1 -	Geenen, Ballestero			
Year 5 - 2011 2011 Survey Station Elevation Notes	Year 4 - 2010 2010 Survey Station Elevation Notes	Year 3 - 2009 2009 Survey Station Elevation Notes	Year 2 - 2008 2008 Survey Station Elevation Notes	Year I - 2007 2007 Survey 3010 33 190.38 8.33 190.35 12.7 199.51 12.8 199.54 12.8 199.54 22.12 199.57 24.71 199.57 25.25 164.55 26.26 166.52 31.67 164.65 32.55 184.484 33.78 106.54 35.77 106.54 35.77 107.34 40.23 17.92 40.72 187.82 45.38 189.62 45.38 189.62 45.39 189.62 50.51 189.82 50.51 189.84 50.51 189.84 50.51 189.83	Sustein E Station E 4.56 6.9 13.65 16.04 22.49 24.16 25.49 26.1 26.54 26.1 26.87 30.45 31.66 34.28 34.28 34.33 36.53 36.83 36.83 36.83 36.83 36.84 34.83 34.83 36.83 36.84 34.83 36.83 36.83 36.84 36.94 36.85 36.85 36.85 36.85 36.85 36.85 37.85 36.	seline rrvey levation Notes 190.23 189.82 189.51 Left Pin 189.55 LBK 189.47 188.61 188.61 188.63 185.55 185.55 186.47 186.55 186.47 186.55 186.47 186.55 186.47 186.55 186.47 186.55 186.48 186.55 186.48 186.55 186.48 186.55 186.48 186.55 186.48 186.55 186.48 186.55 186.55 186.48 186.55 18	Pn k
					48.93 51.53	189.71 189.34	Photo of Cross-Section 2 - Looking Downstream @ STA 8+47
					54.39 57.19 62.87	189.81 Right Pin 189.28 189.3	PPn Area Width Year 5 - 2011 Year 4 - 2010 Year 3 - 2009 Year 2 - 2008 Year 1 - 2007 Baseline Bench 51.12 44.82 22.29 22.27
	•	•	<u>.</u>	<u>.</u>	•		Mean Depth 2.29 2.01 Max Depth 4.90 4.79

Year 5 - 2011 2013 Survey Year 4 - 2010 2010 Survey Year 3 - 2009 2000 Survey Year 2 - 2008 2000 Survey Year 2 - 2008 2000 Survey Year 2 - 2008 2008 Survey Year 1 - 2007 Survey Baseline Station Elevation Notes Station Elevati	Project Name Cross Section	Overhills Cross Se		Feature	Riffle		Date Crew		7/4/2007, Year 1 - 11/09/2007 - Bidelspach, Jean, Geenen, Year 1 - 0	Geenen, Balle	stero				
46.88 199.32 Right Pin 56.34 188.86	Cross Section Year 5 - 2011 Sur	Cross Se 2011 irvey	ection 3	Year 4 - 2010 2010 Survey		Station	Crew Year 3 - 2009 2009 Survey	AS Built -	- Bidelspach, Jean, Geenen, Year 1 - 0 Year 2 - 2008 2008 Survey	Yr 2 Station 4.06 8.41 9.18 13.52 18 19.99 22.85 23.82 25.46 27.49 29.75 32.85 34.65 34.65 34.61 40.08 41.78 46.9	ear 1 - 2007 007 Survey Elevation 1 188.79 189.33 189.01 189.33 189.07 187.84 187.37 186.71 186.63 186.44 186.55 187.35 189.58 189.55 189.58 188.95	Notes Left Pin LBK RBK	Station 4.48 8.32 15.78 19.61 20.74 22.18 23.54 24.3 26.31 28.49 29.75 33.82 35.19 33.82 35.19 36.54 37.91 39.653 41.31 43.25	Elevation 1 Elevation 1 188.83 189.36 189.1 188.61 188.61 188.61 186.64 186.64 186.64 186.64 186.54 186.54 186.54 186.71 187.12 187.71 188.3 189.04 189.57 189.19 189.07 189.32	Left Pin LBK RBK

	Photo of Cross-Section 3 - Looking Downstream @ STA 13+12												
	Year 5 - 2011	Year 4 - 2010	Year 3 - 2009	Year 2 - 2008	Year 1 - 2007	Baseline	Bench						
Area					31.52	31.03							
Width					17.86	18.15							
Mean Depth					1.76	1.71							
Max Depth					2.60	2.60							
W/D					10.13	10.62							

Project Name Overhills Feature Pool Date As Built -7/4/2007, Year 1 - 11/09/2007 Cross Section Cross Section 4 Crew AS Built - Bidelspach, Jean, Geenen, Year 1 - Geenen, Ballestero	
Year 5 - 2011 2011 Survey Year 4 - 2010 2010 Survey Year 3 - 2009 2000 Survey Year 2 - 2008 2008 Survey Year 1 - 2007 2008 Survey Baseline Station Survey Station Elevation Notes Statio	Final Karaka Kar Karaka Karaka Karaka Karaka Karaka Karaka Karaka Karaka Karak Karaka Karaka Kara

Project Name Cross Section	Overhills Cross Se		Feature	Riffle		Date Crew		ar 1 - 11/09/20 Jean, Geenen, '	enen, Balleste	ro				
Year 5 - 20 2011 Surv Station Elevat		Station	Year 4 - 2010 2010 Survey Elevation	Notes	Station	Year 3 - 2009 2009 Survey Elevation	Notes	Year 2 - 2008 2008 Survey Elevation N	2	ear 1 - 2007 007 Survey Elevation		s	aseline Survey Elevation	Notes
									1.97 3.09 6.14 11.52	187.01 188.03	Left Pin LBK	3.05 3.21 5.01 11.66	187.27 186.96 188.08	Left Pin LBK
									14.4 17.16 19.42 20.32 22.12	187.54 186.66 186.15 185.91 185.62		14.84 16.8 20.84 28.91 32.28	187.43 186.56 185.74 185.57 186.73	
									23.61 25.53 27.2 29.26	185.58 185.5 185.44 185.48		36.26 40.89 43.43 46.4	187.99 187.36 187.09	
									31.34 32.57 35.43 39.09	185.47 186.42 187.61 187.87	RBK	47.3	187.8	
									43.07 46.38 47.57 47.83	186.93 187.14 187.74 187.74	Right Pin			
									48.91	186.99				

		Photo of Cros	s-Section 2 - Looki	ng Downstream @	STA 26+86		
	Year 5 - 2011	Year 4 - 2010	Year 3 - 2009	Year 2 - 2008	Year 1 - 2007	Baseline	Bench
Area	1011 0 - 2011	1011 4 - 2010	1Cm 5 - 2005	1011 2 - 2000	40.91	37.70	beach
Width Mean Depth					24.50 1.67	24.16 1.56	
Max Depth W/D					2.55 14.68	2.42 15.48	

	verhills Feature Pe cross Section 6	Date As Built -7/4/2007, Year 1 - 11/09/2 Crew AS Built - Bidelspach, Jean, Geenen,		
Year 5 - 2011 2011 Survey Station Elevation	Year 4 - 2010 2010 Survey	Year 3 - 2009 Year 2 - 2008 2009 Survey 2008 Survey	8 Year 1 - 2007 Baseline 2007 Survey Survey	Photo of Cross-Section 6 - Looking Downstream @ STA 314:56
				Year 5 - 2011 Year 4 - 2010 Year 3 - 2009 Year 2 - 2008 Year 1 - 2077 Baseline Bench Area With 12,23,53 23,43 19,24 19,06 Weath 1,32 1,23 1,23 1,23

Project Name	Overhills		Feature	Riffle		Date		ar 1 - 11/09/2007						
Cross Section Year 5 - 2011 Sur	rvey	on 7 Y	7ear 4 - 2010 2010 Survey Elevation	Notes	Station	Crew Year 3 - 2009 2009 Survey Elevation		Jean, Geenen, Year 1 - G Year 2 - 2008 2008 Survey Elevation Notes	Y 2 Station 4.74 12.19	ear 1 - 200 007 Survey Elevation 186.69 186.6	Notes	Su Station 4.15 9.61	186.87 186.87	
									13.71 21.01 24.31 30.38 35.69 38.52	186.99 186.69 186.86 184.52 184.22 183.06	Left Pin LBK	13.66 15.81 20.13 24.47 30.71 34.39	187.15 186.72 186.73 186.97 184.7 184.84	Left Pit
									38.52 39.99 41.24 43.5 46.61 48.2	182.3 181.68 181.17 181.18		36.75 38.32 40.06 41.51	184.26 183.21 182.77 182.4	LBK
									48.2 48.67 50 52.21 54.14 56.73	181.55 182.32 184.15 185.51 185.86 186.64	RBK	43.08 45.41 47.24 49.08 49.97 51.07	181.71 181.32 181.31 182.1 184.05 184.92	RBł
									61.3 63.79 69.14	186.44	Right Pin	53.14 56.23 60.6 63.81 66.24	184.92 185.58 186.41 186.59 187.1 186.52	
												71.92	186.6	

	Year 5 - 2011	Year 4 - 2010	Year 3 - 2009	Year 2 - 2008	Year 1 - 2007	Baseline	Bench
Area					39.41	35.21	
Width					16.68	16.54	
Mean Depth					2.36	2.13	
Max Depth					3.67	3.53	
W/D					7.06	7.77	

Project Name Cross Section	Overhills Cross Section 8	Feature Pool	Date Crew	7/4/2007, Year 1 - 11/09/2007 - Bidelspach, Jean, Geenen, Year 1 - C	eenen, Ballestero										
Year 5 - 2011 2011 Survey Station Elevation		Year 4 - 2010 2010 Survey Elevation Notes	Year 3 - 2 2009 Surv Station Elevati	Year 2 - 2008 2008 Survey Station Elevation Notes	Year 1 - 2007 2007 Survey Station Elevation Notes 13.4 185.53 22.11 185.53 22.57 185.77 29.88 185.44 37.04 185.84 37.04 185.84 43.7 182.64 43.7 182.64 46.24 181.29 46.38 179.99 48.16 179.17 48.16 179.17 48.16 179.17 51.99 179.1 54.36 180.22 57.57 180.65 56.87 180.65 58.63 182.71 63.42 185.79 65.77 186.57 73.19 185.15 75.56 185.81 75.68 185.81 75.68 185.81 75.66 185.81 75.66 185.81 75.66 185.81 75.66 185.81 75.6	AS- Station 3.83 24.28 24.28 3.191 34.62 37.77 41.17 44.37 46.85 47.86 49.44 51.31 53.144 55.48 56.59 58.19 80.26 65.42 57.59 58.19 80.26 67.81 71.84	BUILT 2006 BUILT Survey Elevation Notes 185.78 185.93 Left Pin 185.93 Left Pin 185.93 Left Pin 185.98 186.2 LBK 184.6 182.74 181.63 180.88 179.7 178.94 178.94 178.94 179.2 179.72 RBK 180.29 180.59 182.71 183.96 182.71 183.96 182.71 183.96 185.58 186.4 185.58 186.43	Area Width Mean Depth	Yer 5 - 211	Photo of C Year 4 - 2010	Cross-Section 8 - La Year 3 - 2009	voking Downstream	w e STA 43+02 Y er 1 - 307 17.72 4.00	AS-BULIT 2006 12.10 22.10 3.92	Beth

B.7 LONGITUDINAL PLOTS

XS4 - Overhills ,	Pebble Count
-------------------	--------------

Size (mm)	Size Distribution	on	Туре
D16 0.062	mean 0.	1 silt/clay	35%
D35 0.062	dispersion 2.	4 sand	65%
D50 0.081	skewness 0.2	26 gravel	0%
D65 0.11		cobble	0%
D84 0.28		boulder	0%
D95 0.42			

Size (r	nm)	Size Distr	ribution	Т	уре	
D16	0.062	mean	0.1	silt/clay	21%	
D35	0.098	dispersion	2.4	sand	79%	
D50	0.15	skewness	-0.01	gravel	0%	
D65	0.21			cobble	0%	
D84	0.35			boulder	0%	
D95	0.48					

XS6 - Overhills , Pebble Count

Overhills/Jumping Run Creek Restoration Project - EEP No. 199 Stantec – Monitoring Year 1 of 5 – Final # of particles

-cumulative %

APPENDIX C – WETLAND RAW DATA

C.1 GAUGE DATA

2007 Groundwater Data Well JR-1 (SN: 00000A282F9D)

Overhills/Jumping Run Creek Restoration Project - EEP No. 199 Stantec – Monitoring Year 1 of 5 – Final

2006 Groundwater Data Well JR-2 (SN: 00000B6517D5)

Date

Overhills/Jumping Run Creek Restoration Project - EEP No. 199 Stantec – Monitoring Year 1 of 5 – Final

2006 Groundwater Data

2007 Groundwater Data Well JR-4 (SN: 00000A28813D)

Overhills/Jumping Run Creek Restoration Project - EEP No. 199 Stantec – Monitoring Year 1 of 5 – Final

Date

2006 Groundwater Data Well JR-5 (SN: 00000A278DE1)

2006 Groundwater Data Well JR-6 (SN: 00000A28A0D9)

2007 Groundwater Data Well JR-6 (SN: 00000A28A0D9)

2006 Groundwater Data Well JR-7 (SN: 00000AB36E51)

2007 Groundwater Data Well JR-7 (SN: 00000AB36E51)

Overhills/Jumping Run Creek Restoration Project - EEP No. 199 Stantec – Monitoring Year 1 of 5 – Final

2007 Groundwater Data Well JR-8 (SN: 00000AB372F9)

Overhills/Jumping Run Creek Restoration Project - EEP No. 199 Stantec – Monitoring Year 1 of 5 – Final

2007 Groundwater Data Well JR-9 (SN: 00000AB35FB9)

Overhills/Jumping Run Creek Restoration Project - EEP No. 199 Stantec – Monitoring Year 1 of 5 – Final

2006 Groundwater Data Well JR-10 (SN: 00000A287F34)

2007 Groundwater Data Well JR-10 (SN: 00000A287F34)

2006 Groundwater Data Well JR-11 (SN: 00000A289B07)

Overhills/Jumping Run Creek Restoration Project - EEP No. 199 Stantec – Monitoring Year 1 of 5 – Final

2007 Groundwater Data Well JR-11 (SN: 00000A289B07)

2007 Groundwater Data Well JR-12 (SN: 00000AB3660B)

2006 Groundwater Data Well JR-14 (SN: 00000A285751)

Overhills/Jumping Run Creek Restoration Project - EEP No. 199 Stantec – Monitoring Year 1 of 5 – Final

2006 Groundwater Data Well JR-15 (SN: 00000A288465)

Overhills/Jumping Run Creek Restoration Project - EEP No. 199 Stantec – Monitoring Year 1 of 5 – Final

APPENDIX D – CURRENT CONDITION PLAN VIEW

See following page for Current Condition Plan View Map.

